Dunning Hotopp JC, Fink DL, Ribeiro JM, Desjardins CA, Nutman TB, Haas BJ, Birren BW, Cerqueira GC, Zucker J, Saif S, Zeng Q, Levin JZ, Goldberg JM, Fan L, Wortman JR, Russ C
[
Nat Genet,
2013]
Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, L. loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4-Mb genome of L. loa and that of the related filarial parasite Wuchereria bancrofti and predict 14,907 L. loa genes on the basis of microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to those of several other nematodes, we demonstrate synteny among filariae but not with nonparasitic nematodes. The L. loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for use in humans. Despite lacking Wolbachia, L. loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role of Wolbachia in filarial biology is more subtle than previously thought and reveal marked differences between parasitic and nonparasitic nematodes.
Fortini ME, Birney E, Hariharan IK, Skupski MP, Nelson CR, Rubin GM, Brody T, Wortman JR, Ashburner M, Henikoff S, Boguski MS, Li PW, Misra S, Miklos GLG, Fleischmann W, Cherry JM, Apweiler R, Yandell MD, Brokstein P -COMMENT et al
[
Science,
2000]
A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
[
Genetics,
2020]
Environmental toxicants are chemicals that negatively affect human health. Although there are numerous ways to limit exposure, the ubiquitous nature of certain environmental toxicants makes it impossible to avoid them entirely. Consequently, scientists are continuously working toward developing strategies for combating their harmful effects. Using the nematode <i>Caenorhabditis elegans</i>, a model with many genetic and physiological similarities to humans, researchers in the Colaiacovo laboratory have identified several molecular mechanisms by which the toxic agent bisphenol A (BPA) interferes with reproduction. Here, we address their recent discovery that a widely available compound, Coenzyme Q10 (CoQ10), can rescue BPA-induced damage. This work is significant in that it poses a low-cost method for improving reproductive success in humans. The goal of this primer is to assist educators and students with navigating the paper entitled "Antioxidant CoQ10 Restores Fertility by Rescuing Bisphenol A-Induced Oxidative DNA Damage in the <i>Caenorhabditis elegans</i> Germline." It is ideally suited for integration into an upper-level undergraduate course such as Genetics, Cell and Molecular Biology, Developmental Biology, or Toxicology. The primer provides background information on the history of BPA, the utility of the <i>C. elegans</i> germ line as a model for studying reproductive toxicity, and research methods including assessment of programmed cell death, fluorescent microscopy applications, and assays to quantify gene expression. Questions for deeper exploration in-class or online are provided.<b>Related article in <i>GENETICS</i>:</b> Hornos Carneiro MF, Shin N, Karthikraj R, Barbosa F Jr, Kannan K, Colaiacovo MP. Antioxidant CoQ10 restores fertility by rescuing bisphenol A-induced oxidative DNA damage in the <i>Caenorhabditis elegans</i> Germline. Genetics 214:381-395.