-
[
Artif Intell Med,
2005]
OBJECTIVE:: Living organisms have mechanisms to adapt to various conditions of external environments. If we can realize these mechanisms on the computer, it may be possible to apply methods of biological and biomimetic adaptation to the engineering of artificial machines. This paper focuses on the nematode Caenorhabditis elegans (C. elegans), which has a relatively simple structure and is one of the most studied multicellular organisms. We aim to develop its computer model, artificial C. elegans, to analyze control mechanisms with respect to motion. Although C. elegans processes many kinds of external stimuli, we focused on gentle touch stimulation. METHODS:: The proposed model consists of a neuronal circuit model for motor control that responds to gentle touch stimuli and a kinematic model of the body for movement. All parameters included in the neuronal circuit model are adjusted by using the real-coded genetic algorithm. Also, the neuronal oscillator model is employed in the body model to generate the sinusoidal movement. The motion velocity of the body model is controlled by the neuronal circuit model so as to correspond to the touch stimuli that are received in sensory neurons. CONCLUSION:: The computer simulations confirmed that the proposed model is capable of realizing motor control similar to that of the actual organism qualitatively. By using the artificial organism it may be possible to clarify or predict some characteristics that cannot be measured in actual experiments. With the recent development of computer technology, such a computational analysis becomes a real possibility. The artificial C. elegans will contribute for studies in experimental biology in future, although it is still developing at present.
-
[
J Neurosci,
2003]
Thermotactic behavior in Caenorhabditis elegans is sensitive to both a worm's ambient temperature (T-amb) and its memory of the temperature of its cultivation (T-cult). The AFD neuron is part of a neural circuit that underlies thermotactic behavior. By monitoring the fluorescence of pH-sensitive green fluorescent protein localized to synaptic vesicles, we measured the rate of the synaptic release of AFD in worms cultivated at temperatures between 15 and 25degreesC, and subjected to fixed, ambient temperatures in the same range. We found that the rate of AFD synaptic release is high if either T-amb > T-cult or T-amb > T-cult, but AFD synaptic release is low if T-amb congruent to T-cult. This suggests that AFD encodes a direct comparison between T-amb and T-cult.
-
[
Genomics,
1995]
Recently, a novel family of genes with a region of homology to the mouse T locus, which is known to play a crucial, and conserved, role in vertebrate development, has been discovered. The region of homology has been named the T-box. The T-box domain of the prototypical T locus product is associated with sequence-specific DNA binding activity. In this report, we have characterized four members of the T-box gene family from the nematode Caenorhabditis elegans. All lie in close proximity to each other in the middle of chromosome III. Homology analysis among all completely sequenced T-box products indicates a larger size for the conserved T-box domain (166 to 203 residues) than previously reported. Phylogenetic analysis suggests that one C. elegans T-box gene may be a direct ortholog of the mouse Tbx2 and Drosophila omb genes. The accumulated data demonstrate the ancient nature of the T-box gene family and suggest the existence of at least three separate T-box-containing genes in a common early metazoan ancestor to nematodes and vertebrates.
-
[
Glycobiology,
2006]
The common O-glycan core structure in animal glycoproteins is the core 1 disaccharide Galbeta1-3GalNAcalpha1-Ser/Thr, which is generated by addition of Gal to GalNAcalpha1-Ser/Thr by core 1 UDP-Gal:GalNAcalpha1-Ser/Thr beta1,3-galactosyltransferase (core 1 beta3-Gal-T or T-synthase, EC2.4.1.122)(2). Although O-glycans play important roles in vertebrates, much remains to be learned from model organisms such as the free-living nematode Caenorhabditis elegans, which offer many advantages in exploring O-glycan structure/function. Here we report the cloning and enzymatic characterization of T-synthase from C. elegans (Ce-T-synthase). A putative C. elegans gene for T-synthase, C38H2.2, was identified in GenBank by a BlastP search using the human T-synthase protein sequence. The full-length cDNA for Ce-T-synthase, which was generated by PCR using a C. elegans cDNA library as the template, contains 1,170 bp including the stop TAA. The cDNA encodes a protein of 389 amino acids with typical type-II membrane topology and a remarkable 42.7% identity to the human T-synthase. Ce-T-synthase has 7 Cys residues in the lumenal domain including 6 conserved Cys residues in all of the orthologs. The Ce-T-synthase has 4 potential N-glycosylation sequons, whereas the mammalian orthologs lack N-glycosylation sequons. Only one gene for Ce-T-synthase was identified in the genome-wide search and it contains 8 exons. Promoter analysis of the Ce-T-synthase using green fluorescent protein constructs show that the gene is expressed at all developmental stages and appears to be in all cells. Unexpectedly, only minimal activity was recovered in the recombinant, soluble Ce-T-synthase secreted from a wide variety of mammalian cell lines, whereas robust enzyme activity was recovered in the soluble Ce-T-synthase expressed in Hi-5 insect cells. Vertebrate T-synthase requires the molecular chaperone Cosmc, but our results show that Ce-T-synthase does not require Cosmc, and might require invertebrate-specific factors for formation of the optimally active enzyme. These results show that the Ce-T-synthase is a functional ortholog to the human T-synthase in generating core 1 O-glycans and opens new avenues to explore O-glycan function in this model organism.
-
[
Int J Syst Evol Microbiol,
2007]
A yellow-pigmented, Gram-positive, aerobic, non-motile, non-spore-forming, irregular rod-shaped bacterium (strain TAN 31504(T)) was isolated from the bacteriophagous nematode Caenorhabditis elegans. Based on 16S rRNA gene sequence similarity, DNA G+C content of 69.5 mol%, 2,4-diaminobutyric acid in the cell-wall peptidoglycan, major menaquinone MK-11, abundance of anteiso- and iso-fatty acids, polar lipids diphosphatidylglycerol and phosphatidylglycerol and a number of shared biochemical characteristics, strain TAN 31504(T) was placed in the genus Leucobacter. DNA-DNA hybridization comparisons demonstrated a 91 % DNA-DNA relatedness between strain TAN 31504(T) and Leucobacter chromiireducens LMG 22506(T) indicating that these two strains belong to the same species, when the recommended threshold value of 70 % DNA-DNA relatedness for the definition of a bacterial species by the ad hoc committee on reconciliation of approaches to bacterial systematics is considered. Based on distinct differences in morphology, physiology, chemotaxonomic markers and various biochemical characteristics, it is proposed to split the species L. chromiireducens into two novel subspecies, Leucobacter chromiireducens subsp. chromiireducens subsp. nov. (type strain L-1(T)=CIP 108389(T)=LMG 22506(T)) and Leucobacter chromiireducens subsp. solipictus subsp. nov. (type strain TAN 31504(T)=DSM 18340(T)=ATCC BAA-1336(T)).
-
[
Sci Rep,
2021]
Caenorhabditis elegans (C. elegans) can produce various motion patterns despite having only 69 motor neurons and 95 muscle cells. Previous studies successfully elucidate the connectome and role of the respective motor neuron classes related to movement. However, these models have not analyzed the distribution of the synaptic and gap connection weights. In this study, we examined whether a motor neuron and muscle network can generate oscillations for both forward and backward movement and analyzed the distribution of the trained synaptic and gap connection weights through a machine learning approach. This paper presents a connectome-based neural network model consisting of motor neurons of classes A, B, D, AS, and muscle, considering both synaptic and gap connections. A supervised learning method called backpropagation through time was adapted to train the connection parameters by feeding teacher data composed of the command neuron input and muscle cell activation. Simulation results confirmed that the motor neuron circuit could generate oscillations with different phase patterns corresponding to forward and backward movement, and could be switched at arbitrary times according to the binary inputs simulating the output of command neurons. Subsequently, we confirmed that the trained synaptic and gap connection weights followed a Boltzmann-type distribution. It should be noted that the proposed model can be trained to reproduce the activity patterns measured for an animal (HRB4 strain). Therefore, the supervised learning approach adopted in this study may allow further analysis of complex activity patterns associated with movements.
-
[
Genome,
1997]
The T-box gene family consists of members that share a unique DNA binding domain. The best characterized T-box gene, Brachyury or T, encodes a transcription factor that plays an important role in early vertebrate development. Seven other recently described mouse T-box genes are also expressed during development. In the nematode Caenorhabditis elegans, four T-box genes have been characterized to date. In this study, we describe three new C. elegans T-box genes, named
Ce-tbx-11,
Ce-tbx-12, and
Ce-tbx-17.
Ce-tbx-11 and
Ce-tbx-17 were uncovered through the sequencing efforts of the C. elegans Genome Project.
Ce-tbx-12 was uncovered through degenerate PCR analysis of C. elegans genomic DNA.
Ce-tbx-11 and
Ce-tbx-17 are located in close proximity to the four other previously described T-box genes in the central region of chromosome III. In contrast,
Ce-tbx-12 maps alone to chromosome II. Phylogenetic analysis of all known T-box domain sequences provides evidence of an ancient origin for this gene family.
-
[
J Med Food,
2016]
Tenebrio molitor are large insects and their larvae are consumed as food in many countries. The nutritional composition of T. molitor has been studied and contains high amounts of proteins, unsaturated fatty acids, and valuable minerals. However, the bioactivity of T. molitor has not been fully understood. We examined the effects of T. molitor extracts on resistance to oxidative stress and organism's lifespan using Caenorhabditis elegans as a model system. The response to heat shock and ultraviolet (UV) irradiation was monitored in vivo. The extracts from T. molitor showed significant effects on resistance to oxidative stress and UV irradiation and extend both mean and maximum lifespan of C. elegans. The number of progeny produced significantly increased in animals supplemented with T. molitor extracts. In addition, the expression of
hsp-16.2 and
sod-3 was markedly upregulated by supplementation with T. molitor extracts. These findings suggest that T. molitor extracts can increase response to stressors and extend lifespan by the induction of longevity assurance genes in C. elegans.
-
[
Exp Parasitol,
1994]
Immunocompetent mice are nonpermissive for the development and maturation of the human filarial parasite, Brugia malayi. We and others have shown that the absence of T-lymphocytes, alone or in combination with B-lymphocytes, renders mice permissive to infection. In a previous study, we showed that mice lacking CD8+ T-lymphocytes are also completely nonpermissive for B. malayi, indicating that CD8+ T-lymphocytes are not an obligate requirement for resistance. In the present study, we have examined the role of CD4+ T-lymphocytes in resistance to filarial infection using two experimental systems. In the first, we used an anti-CD4 monoclonal antibody to deplete CD4+ T-cells in vivo in immunocompetent BALB/c mice. In the second system, we used mutant mice in which the gene encoding the CD4 antigen had been disrupted by homologous recombination, resulting in a lack of CD4+ T-cells. Challenge of either the anti-CD4 antibody depleted BALB/c mice or CD4 knockout mice with B. malayi infective-stage larvae demonstrated that mice lacking CD4+ T-lymphocytes were resistant to infection. These data indicate that CD4+ T-cells are not an obligate requirement for murine resistance to B. malayi.
-
[
Sci Rep,
2018]
The small roundworm Caenorhabditis elegans employs two strategies, termed pirouette and weathervane, which are closely related to the internal representation of chemical gradients parallel and perpendicular to the travelling direction, respectively, to perform chemotaxis. These gradients must be calculated from the chemical information obtained at a single point, because the sensory neurons are located close to each other at the nose tip. To formulate the relationship between this sensory input and internal representations of the chemical gradient, this study proposes a simple computational model derived from the directional decomposition of the chemical concentration at the nose tip that can generate internal representations of the chemical gradient. The ability of the computational model was verified by using a chemotaxis simulator that can simulate the body motions of pirouette and weathervane, which confirmed that the computational model enables the conversion of the sensory input and head-bending angles into both types of gradients with high correlations of approximately r>0.90 (p<0.01) with the true gradients. In addition, the chemotaxis index of the model was 0.64, which is slightly higher than that in the actual animal (0.57). In addition, simulation using a connectome-based neural network model confirmed that the proposed computational model is implementable in the actual network structure.