[
J Appl Toxicol,
2024]
Inorganic nanoparticles are nanomaterials with a central core composed of inorganic specimens, especially metals, which give them interesting applications but can impact the environment and human health. Their short- and long-term effects are not completely known and to investigate that, alternative models have been successfully used. Among these, the nematode Caenorhabditis elegans has been increasingly applied in nanotoxicology in recent years because of its many features and advantages for toxicological screening. This non-parasitic nematode may inhabit any environment where organic matter is available; therefore, it is interesting for ecotoxicological assessments. Moreover, this worm has a high genetic homology to humans, making the findings translatable. A notable number of published studies unraveled the level of toxicity of different nanoparticles, including the mechanisms by which their toxicity occurs. This narrative review collects and describes the most relevant toxicological data for inorganic nanoparticles obtained using C. elegans and also supports its application in safety assessments for regulatory purposes.
[
J Cell Biol,
2016]
Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure.
[
International Worm Meeting,
2017]
Extracellular vesicles are emerging as an important aspect of intercellular communication by delivering a parcel of proteins, lipids even nucleic acids to specific target cells over short or long distances (Maas 2017). A subset of C. elegans ciliated neurons release EVs to the environment and elicit changes in male behaviors in a cargo-dependent manner (Wang 2014, Silva 2017). Our studies raise many questions regarding these social communicating EV devices. Why is the cilium the donor site? What mechanisms control ciliary EV biogenesis? How are bioactive functions encoded within EVs? EV detection is a challenge and obstacle because of their small size (100nm). However, we possess the first and only system to visualize and monitor GFP-tagged EVs in living animals in real time. We are using several approaches to define the properties of an EV-releasing neuron (EVN) and to decipher the biology of ciliary-released EVs. To identify mechanisms regulating biogenesis, release, and function of ciliary EVs we took an unbiased transcriptome approach by isolating EVNs from adult worms and performing RNA-seq. We identified 335 significantly upregulated genes, of which 61 were validated by GFP reporters as expressed in EVNs (Wang 2015). By characterizing components of this EVN parts list, we discovered new components and pathways controlling EV biogenesis, EV shedding and retention in the cephalic lumen, and EV environmental release. We also identified cell-specific regulators of EVN ciliogenesis and are currently exploring mechanisms regulating EV cargo sorting. Our genetically tractable model can make inroads where other systems have not, and advance frontiers of EV knowledge where little is known. Maas, S. L. N., Breakefield, X. O., & Weaver, A. M. (2017). Trends in Cell Biology. Silva, M., Morsci, N., Nguyen, K. C. Q., Rizvi, A., Rongo, C., Hall, D. H., & Barr, M. M. (2017). Current Biology. Wang, J., Kaletsky, R., Silva, M., Williams, A., Haas, L. A., Androwski, R. J., Landis JN, Patrick C, Rashid A, Santiago-Martinez D, Gravato-Nobre M, Hodgkin J, Hall DH, Murphy CT, Barr, M. M. (2015).Current Biology. Wang, J., Silva, M., Haas, L. A., Morsci, N. S., Nguyen, K. C. Q., Hall, D. H., & Barr, M. M. (2014). Current Biology.
[
Biochemistry,
1987]
The major intestinal esterase from the nematode Caenorhabditis elegans has been purified to essential homogeneity. Starting from whole worms, the overall purification is 9000-fold with a 10% recovery of activity. The esterase is a single polypeptide chain of Mr 60,000 and is stoichiometrically inhibited by organophosphates. Substrate preferences and inhibition patterns classify the enzyme as a carboxylesterase (EC 3.1.1.1), but the physiological function is unknown. The sequence of 13 amino acid residues at the esterase N- terminus has been determined. This partial sequence shows a surprisingly high degree of similarity to the N-terminal sequence of two carboxylesterases recently isolated from Drosophila mojavensis [Pen, J., van Beeumen, J., & Beintema, J. J. (1986) Biochem. J. 238, 691-699].