-
[
Am J Trop Med Hyg,
1988]
Two clinical studies were carried out in Gabon, Africa to evaluate the efficacy, safety, and tolerability of ivermectin in the treatment of patients with Loa loa infection. In the first study, 35 patients received single oral doses of ivermectin, 5-200 mcg/kg body weight. Blood microfilariae levels did not decrease after a single oral 5, 10, 30, or 50 mcg/kg dose of ivermectin, but levels did decrease after doses of 100, 150, and 200 mcg/kg. The most efficacious dose was 200 mcg/kg; mean blood microfilariae levels decreased to 12% of mean pretreatment values by day 15 and remained decreased for 28 days. A second study evaluated the safety and efficacy of ivermectin in patients with multifilarial infections. All 17 patients had concomitant Loa loa and O. volvulus infection. M. perstans affected 5 of the patients. Sixteen patients also had infections due to intestinal nematodes. The patients each received single oral doses of 200 mcg/kg ivermectin. Ten days later, the mean Loa loa blood microfilariae level had decreased to 20% of the mean pretreatment level. O. volvulus dermal microfilariae densities were reduced to 2% of the pretreatment levels. A minimal increase in blood microfilaria levels was observed on day 28. In contrast, dermal microfilariae levels remained near zero for the duration of the study. Intestinal infection due to Ascaris was eradicated in all of the affected patients by day 23; efficacy against Trichuris and hookworm infections, however, was poor. All patients tolerated ivermectin well including those with multiple infections.
-
[
Bull Soc Pathol Exot Filiales,
1989]
Administration of ivermectin (Mectizan) in Loa loa filariasis induces a significant decrease of microfilaria load within 3 to 15 days. The excellent tolerability of the drug in patients infested simultaneously by O. volvulus and Loa loa allows to use ivermectin in mass treatments in geographical areas where the same patients can be affected by several filariasis. There is almost no efficacy against Mansonella perstans. A second administration one month after the first one in Loa loa affected patients has not led to a complete disappearance of microfilaria; the tolerability has still been good. Efficacy on Ascaris lumbricoides appears to be excellent; further studies are necessary in the cases of trichuriasis, ancylostomiasis and strongyloidiasis.
-
[
Worm Breeder's Gazette,
1994]
C. elegans Molecular Genetics and Long PCR Scott R. Townsend, Cathy Savage, Alyce L. Finelli, Ting Xie, and Richard W. Padgett, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855
-
[
Biosci Biotechnol Biochem,
2016]
We compared the growth inhibitory effects of all aldohexose stereoisomers against the model animal Caenorhabditis elegans. Among the tested compounds, the rare sugars d-allose (d-All), d-talose (d-Tal), and l-idose (l-Ido) showed considerable growth inhibition under both monoxenic and axenic culture conditions. 6-Deoxy-d-All had no effect on growth, which suggests that C6-phosphorylation by hexokinase is essential for inhibition by d-All.
-
[
Bioorg Med Chem Lett,
2016]
Biological activities of unusual monosaccharides (rare sugars) have largely remained unstudied until recently. We compared the growth inhibitory effects of aldohexose stereoisomers against the animal model Caenorhabditis elegans cultured in monoxenic conditions with Escherichia coli as food. Among these stereoisomers, the rare sugar d-arabinose (d-Ara) showed particularly strong growth inhibition. The IC50 value for d-Ara was estimated to be 7.5mM, which surpassed that of the potent glycolytic inhibitor 2-deoxy-d-glucose (19.5mM) used as a positive control. The inhibitory effect of d-Ara was also observed in animals cultured in axenic conditions using a chemically defined medium; this excluded the possible influence of E. coli. To our knowledge, this is the first report of biological activity of d-Ara. The d-Ara-induced inhibition was recovered by adding either d-ribose or d-fructose, but not d-glucose. These findings suggest that the inhibition could be induced by multiple mechanisms, for example, disturbance of d-ribose and d-fructose metabolism.
-
[
Biochim Biophys Acta Proteins Proteom,
2020]
d-Aspartate oxidase (DDO) is a flavin adenine dinucleotide (FAD)-containing flavoprotein that stereospecifically acts on acidic D-amino acids (i.e., free d-aspartate and D-glutamate). Mammalian DDO, which exhibits higher activity toward d-aspartate than D-glutamate, is presumed to regulate levels of d-aspartate in the body and is not thought to degrade D-glutamate in vivo. By contrast, three DDO isoforms are present in the nematode Caenorhabditis elegans, DDO-1, DDO-2, and DDO-3, all of which exhibit substantial activity toward D-glutamate as well as d-aspartate. In this study, we optimized the Escherichia coli culture conditions for production of recombinant C. elegans DDO-1, purified the protein, and showed that it is a flavoprotein with a noncovalently but tightly attached FAD. Furthermore, C. elegans DDO-1, but not mammalian (rat) DDO, efficiently and selectively degraded D-glutamate in addition to d-aspartate, even in the presence of various other amino acids. Thus, C. elegans DDO-1 might be a useful tool for determining these acidic D-amino acids in biological samples.
-
[
Bioorg Med Chem Lett,
2019]
The biological activities of deoxy sugars (deoxy monosaccharides) have remained largely unstudied until recently. We compared the growth inhibition by all 1-deoxyketohexoses using the animal model Caenorhabditis elegans. Among the eight stereoisomers, 1-deoxy-d-allulose (1d-d-Alu) showed particularly strong growth inhibition. The 50% inhibition of growth (GI<sub>50</sub>) concentration by 1d-d-Alu was estimated to be 5.4mM, which is approximately 10 times lower than that of d-allulose (52.7mM), and even lower than that of the potent glycolytic inhibitor, 2-deoxy-d-glucose (19.5mM), implying that 1d-d-Alu has a strong growth inhibition. In contrast, 5-deoxy- and 6-deoxy-d-allulose showed no growth inhibition of C. elegans. The inhibition by 1d-d-Alu was alleviated by the addition of d-ribose or d-fructose. Our findings suggest that 1d-d-Alu-mediated growth inhibition could be induced by the imbalance in d-ribose metabolism. To our knowledge, this is the first report of biological activity of 1d-d-Alu which may be considered as an antimetabolite drug candidate.
-
[
J Appl Glycosci (1999),
2019]
D-Allose (D-All), C-3 epimer of D-glucose, is a rare sugar known to suppress reactive oxygen species generation and prevent hypertension. We previously reported that D-allulose, a structural isomer of D-All, prolongs the lifespan of the nematode Caenorhabditis elegans. Thus, D-All was predicted to affect longevity. In this study, we provide the first empirical evidence that D-All extends the lifespan of C. elegans. Lifespan assays revealed that a lifespan extension was induced by 28 mM D-All. In particular, a lifespan extension of 23.8 % was achieved (p< 0.0001). We further revealed that the effects of D-All on lifespan were dependent on the insulin gene
daf-16 and the longevity gene
sir-2.1, indicating a distinct mechanism from those of other hexoses, such as D-allulose, with previously reported antiaging effects.
-
[
J Nat Med,
2008]
No anthelmintic sugars have yet been identified. Eight ketohexose stereoisomers (D- and L-forms of psicose, fructose, tagatose and sorbose), along with D-galactose and D-glucose, were examined for potency against L1 stage Caenorhabditis elegans fed Escherichia coli. Of the sugars, D-psicose specifically inhibited the motility, growth and reproductive maturity of the L1 stage. D-Psicose probably interferes with the nematode nutrition. The present results suggest that D-psicose, one of the rare sugars, is a potential anthelmintic.
-
Arai, Hiroyuki, Furuchi, Takemitsu, Okutsu, Mari, Homma, Hiroshi, Saitoh, Yasuaki, Katane, Masumi, Inoue, Takao, Sekine, Masae, Sakamoto, Taro
[
International Worm Meeting,
2013]
Among free D-amino acids existing in living organisms, D-serine (D-Ser) and D-aspartate (D-Asp) are the most intensively studied. In mammals, D-Ser has been proposed as a neuromodulator that regulates L-glutamate (L-Glu)-mediated activation of the N-methyl-D-Asp (NMDA) receptor by acting as a co-agonist. On the other hand, several lines of evidence suggest that D-Asp plays important roles in regulating hormone secretion and steroidogenesis. D-Amino acid oxidase (DAO) and D-Asp oxidase (DDO) are known as stereospecific degradative enzymes that catalyze the oxidative deamination of D-amino acids. Mammalian DAO and DDO are presumed to regulate endogenous D-Ser and D-Asp levels, respectively. Previously, we demonstrated that D-Ser, D-Asp, D-Glu and D-alanine (D-Ala) are present in nematode Caenorhabditis elegans, a multicellular model animal. We also found that C. elegans has at least one active DAO gene and three active DDO genes (DDO-1, DDO-2 and DDO-3), and that the spatiotemporal distributions of these enzymes in the body of C. elegans differ from one another. Furthermore, our previous study showed that alterations of brood size and hatching rate are observed in four C. elegans mutants lacking each gene for the DAO and DDOs. Interestingly, lifespan extension was observed in the DDO-3 mutant. To characterize the mechanism of lifespan extension in the DDO-3 mutant, we performed genetic epistasis experiments to test interactions between the DDO-3 gene and other known longevity pathways. The results suggest that DDO-3 is involved in caloric restriction-induced lifespan extension but not in insulin/IGF signaling pathway, NAD/sir2 pathway nor mitochondrial electron transport system. We also found that D-Glu and L-tryptophan (L-Trp) accumulate throughout life in the DDO-3 mutant. Now we are investigating the relationship between aging and the accumulations of D-Glu and L-Trp.