-
[
Parasitol Today,
1988]
Ivermectin is a semi-synthetic macrocyclic lactone (Fig. I) active in single low doses against many parasites - particularly nematodes and arthropods. It has been registered for animal health use since early 1985, and was earlier this year approved for human use by the French Directorate o f Pharmacy and Drugs. Of particular interest is ivermectin's potential as a micro filaricide for treatment o f onchocerciasis. Clinical trials leave little doubt about the potential o f ivermectin as a therapeutic tool for symptomatic relief from the effects o f infection with Onchocerca volvulus, and the drug is also recognized to have potential in reducing transmission o f the parasite. The manufacturers (Merck, Sharp and Dohme) recently arranged to provide the drug free o f charge to the WHO for mass trials against onchocerciasis in 12 African and Central American countries. In this article we focus on the pharmacological properties o f ivermectin, with a brief consideration of its absorption, fate, excretion and side-effects, and a discussion o f its micro filaricidal action.
-
[
Proc Natl Acad Sci U S A,
2010]
The ternary complex of cadherin, beta-catenin, and alpha-catenin regulates actin-dependent cell-cell adhesion. alpha-Catenin can bind beta-catenin and F-actin, but in mammals alpha-catenin either binds beta-catenin as a monomer or F-actin as a homodimer. It is not known if this conformational regulation of alpha-catenin is evolutionarily conserved. The Caenorhabditis elegans alpha-catenin homolog HMP-1 is essential for actin-dependent epidermal enclosure and embryo elongation. Here we show that HMP-1 is a monomer with a functional C-terminal F-actin binding domain. However, neither full-length HMP-1 nor a ternary complex of HMP-1-HMP-2(beta-catenin)-HMR-1(cadherin) bind F-actin in vitro, suggesting that HMP-1 is auto-inhibited. Truncation of either the F-actin or HMP-2 binding domain of HMP-1 disrupts C. elegans development, indicating that HMP-1 must be able to bind F-actin and HMP-2 to function in vivo. Our study defines evolutionarily conserved properties of alpha-catenin and suggests that multiple mechanisms regulate alpha-catenin binding to F-actin.
-
[
BMC Genomics,
2021]
Background: F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei.Results: Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species.Conclusions: Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.
-
[
J Biol Chem,
2001]
Actin depolymerizing factor (ADF)/cofilin changes the twist of actin filaments by binding two longitudinally associated actin subunits, In the absence of an atomic model of the ADF/cofilin-F-actin complex, we have identified residues in ADF/cofilin that are essential for filament binding. Here, we have characterized the C-terminal tail of UNC-60B (a nematode ADF/cofilin isoform) as a novel determinant for its association with F-actin, Removal of the C-terminal isoleucine (Ile(152)) by carboxypeptidase A or truncation by mutagenesis eliminated F-actin binding activity but strongly enhanced actin depolymerizing activity, Replacement of Ile(152) by Ala had a similar but less marked effect; F-actin binding was weakened and depolymerizing activity slightly enhanced. Truncation of both Arg(151) and Ile(152) or replacement of Arg(151) with Ala also abolished F-actin binding and enhanced depolymerizing activity. Loss of F-actin binding in these mutants was accompanied by loss or greatly decreased severing activity. All of the variants of UNC-60B interacted with G-actin in an indistinguishable manner from wild type. Cryoelectron microscopy showed that UNC-60B changed the twist of F-actin to a similar extent to vertebrate ADF/cofilins. Helical reconstruction and structural modeling of UNC-60B-F-actin complex reveal how the C terminus of UNC-60B might be involved in one of the two actin-binding sites.
-
[
Commun Biol,
2024]
Microbial protein, produced by fermentation of Fusarium venenatum is a promising candidate alternative protein source. Previous study has demonstrated its ability to improve hyperlipidemia in rats, yet the related mechanism remains unclear. In this study, we aimed to evaluate the potential of F. venenatum as an alternative protein source and its impact on lipid metabolism using multi-omics analysis. Initial experiments with Caenorhabditis elegans revealed that F. venenatum enhanced longevity, improved immune responses, and reduced lipid metabolism by downregulating fat synthesis-related genes. Subsequently, we conducted experiments with mice on a high-fat diet to confirm the anti-obesity effects of F. venenatum. The groups fed F. venenatum showed improved lipid profiles and reduced hepatic fat accumulation. Furthermore, fecal metabolomic analysis showed higher excretion of primary bile acid and cholesterol in the groups fed F. venenatum which might lead to a decrease in lipid digestion and hepatic fat accumulation. Collectively, this series of experiments revealed the potential of F. venenatum as a sustainable alternative protein and its application as an anti-obesity supplement.
-
[
Genes Dev,
1989]
The internal structures of the tail of male Caenorhabditis elegans nematodes are made by the descendants of four cells (B, Y, F, and U) which divide only in males. These cells are also present in hermaphrodites, where they have minor structural roles in the rectum. Here we show that the gene
mab-9 is required for the correct development of two of these male-specific blast cells, B and F. In mutant males, the lineages of B and F resemble those of Y and U, respectively. These abnormal lineages lead to grossly defective male tails. We suggest that in
mab-9 males the identities of B and F are transformed into Y and U, their respective anterior neighbors. The case for the F-to-U transformation is less strong than for the B-to-Y transformation because the wild-type lineages of F and U are very similar. Some
mab-9 hermaphrodites are constipated as a result of abnormal rectal structure. This may be the result of an analogous fate transformation.
mab-9 worms of both sexes are slightly uncoordinated. We propose that the fates of the four rectal cells are initially specified as two pairs (B and Y, F and U) and that the function of
mab-9 in both sexes is to differentiate the posterior member of each pair from its anterior neighbor.
-
RajaMuthiah R, Tharmalingam N, Nau GJ, Mylonakis E, Ausubel FM, Jayamani E, Okoli I, Lee K, Hernandez AM, Coleman JJ, Kim W
[
Antimicrob Agents Chemother,
2017]
Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole animal Caenorhabditis elegans-F. tularensis pathosystem for high throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans
p38 MAP kinase cascade is involved in the immune response to F. tularensis and we developed a robust F. tularensis-mediated C. elegans killing assay with a Z'-factor consistently >0.5, which was then utilized to screen a library of FDA approved compounds that included 1,760 small molecules. In addition to clinically used antibiotics, 5 FDA-approved drugs were also identified as potential hits, including the anti-inflammatory drug diflunisal that showed anti-F. tularensis activity in vitro Moreover, the NSAID diflunisal, at 4X MIC, blocked the replication of a F. tularensis live vaccine strain (LVS) in primary human macrophages and non-phagocytic cells. Diflunisal was non-toxic to human erythrocytes and HepG2 human liver cells at concentrations 32-g/ml. Finally, diflunisal exhibited synergetic activity with the antibiotic ciprofloxacin in both a checkerboard assay and a macrophage infection assay. In conclusion, the liquid C. elegans - F. tularensis LVS assay described here allows screening for anti-F. tularensis compounds and suggests that diflunisal could potentially be repurposed for the management of tularemia.
-
[
Biochem J,
2015]
The nematode Caenorhabditis elegans has two ADF (actin-depolymerizing factor)/cofilin isoforms, UNC-60A and UNC-60B, which are expressed by the
unc60 gene by alternative splicing. UNC-60A has higher activity to cause net depolymerization, and to inhibit polymerization, than UNC-60B. UNC-60B, on the other hand, shows much stronger severing activity than UNC-60A. To understand the structural basis of their functional differences, we have determined the solution structures of UNC-60A and UNC-60B proteins and characterized their backbone dynamics. Both UNC-60A and UNC-60B show a conserved ADF/cofilin fold. The G-actin (globular actin)-binding regions of the two proteins are structurally and dynamically conserved. Accordingly, UNC-60A and UNC-60B individually bind to rabbit muscle ADP-G-actin with high affinities, with Kd values of 32.25 nM and 8.62 nM respectively. The primary differences between these strong and weak severing proteins were observed in the orientation and dynamics of the F-actin (filamentous actin)-binding loop (F-loop). In the strong severing activity isoform UNC-60B, the orientation of the F-loop was towards the recently identified F-loop-binding region on F-actin, and the F-loop was relatively more flexible with 14 residues showing motions on a nanosecond-picosecond timescale. In contrast, in the weak severing protein isoform UNC-60A, the orientation of the F-loop was away from the F-loop-binding region and inclined towards its own C-terminal and strand 6. It was also relatively less flexible with only five residues showing motions on a nanosecond-picosecond timescale. These differences in structure and dynamics seem to directly correlate with the differential F-actin site-binding and severing properties of UNC-60A and UNC-60B, and other related ADF/cofilin proteins.
-
Takacs-Vellai K, Qin J, Farkas Z, Jung SY, Kovacs T, Szondy Z, Sandor S, Shakir MA, Zhou Z, Boissan M, Liu X, Mehta A, Budai Z, Rajnavolgyi E, Bajtay Z, Petric M, Niedergang F, Orban TI, Herit F
[
FASEB J,
2019]
Phagocytosis of various targets, such as apoptotic cells or opsonized pathogens, by macrophages is coordinated by a complex signaling network initiated by distinct phagocytic receptors. Despite the different initial signaling pathways, each pathway ends up regulating the actin cytoskeletal network, phagosome formation and closure, and phagosome maturation leading to degradation of the engulfed particle. Herein, we describe a new phagocytic function for the nucleoside diphosphate kinase 1 (NDK-1), the nematode counterpart of the first identified metastasis inhibitor NM23-H1 (nonmetastatic clone number 23) nonmetastatic clone number 23 or nonmetastatic isoform 1 (NME1). We reveal by coimmunoprecipitation, Duolink proximity ligation assay, and mass spectrometry that NDK-1/NME1 works in a complex with DYN-1/Dynamin (<i>Caenorhabditis elegans</i>/human homolog proteins), which is essential for engulfment and phagosome maturation. Time-lapse microscopy shows that NDK-1 is expressed on phagosomal surfaces during cell corpse clearance in the same time window as DYN-1. Silencing of NM23-M1 in mouse bone marrow-derived macrophages resulted in decreased phagocytosis of apoptotic thymocytes. In human macrophages, NM23-H1 and Dynamin are corecruited at sites of phagosome formation in F-actin-rich cups. In addition, NM23-H1 was required for efficient phagocytosis. Together, our data demonstrate that NDK-1/NME1 is an evolutionarily conserved element of successful phagocytosis.-Farkas, Z., Petric, M., Liu, X., Herit, F., Rajnavolgyi, E., Szondy, Z., Budai, Z., Orban, T. I., Sandor, S., Mehta, A., Bajtay, Z., Kovacs, T., Jung, S. Y., Shakir, M. A., Qin, J., Zhou, Z., Niedergang, F., Boissan, M., Takacs-Vellai, K. The nucleoside diphosphate kinase NDK-1/NME1 promotes phagocytosis in concert with DYN-1/dynamin.
-
[
Enzyme & Microbial Technology,
1997]
Size fractionation has been used to isolate L1/L2 larvae from mixed cultures of the nematode, Caenorhabditis elegans. Worm lengths have been compared during growth in synchronized liquid and agar cultures. Supplementation of liquid S medium with 10 ppm surfactant (Pluronics F-68, F-127, F-38, L-35; Tween-20 or Triton X-100) promoted a significant stimulation of growth over three clays in all cases. Because of possible poor nutrition and/or aeration in liquid culture, experiments were repeated using the same surfactants in standard NGM agar. Four surfactants again stimulated worm growth significantly whereas two (Tween-20 and Pluronic F-68) did not. Differences between these surfactants were also demonstrated with respect to: (i) toxicity; (ii) induction of stress responses in a transgenic hsp/reporter strain; and (iii) stimulation of amino acid incorporation into soluble protein both initially and after 41 h of surfactant treatment. These surfactants, and in particular, Pluronic F-127, are potentially valuable as culture supplements for enhancing nematode larval growth. Possible mechanisms for growth promotion by surfactants are discussed in light of the fixed somatic cell lineage and the fact that Pluronic F-127 did not speed up maturation from L4 larvae into egg-bearing adults.