-
[
Worm Breeder's Gazette,
1994]
Interactions Between mei-l and the
unc-116 Kinesin Paul E. Mains, Dept. of Medical Biochemistry, University of Calgary, Calgary, Alberta, Canada
-
[
Worm Breeder's Gazette,
1994]
Characterization of the
let-502 gene Andreas Wissmann, James D. McGhee and Paul E. Mains, Dept. of Medical Biochemistry, University of Calgary, Calgary, Alberta, Canada T2N 4N1
-
[
Worm Breeder's Gazette,
1994]
Evolution of vulva-formation: Part II: Species with a central vulva Ralf J. Sommer & Paul W. Sternberg, California Institute of Technology, Division of Biology 156-29, Pasadena, CA 91125
-
[
Worm Breeder's Gazette,
1992]
Characterization of the axonal guidance and outgrowth gene
unc-33 W. Li, R. K. Herman and J. E. Shaw Department of Genetics and Cell biology, University of Minnesota, St Paul, MN 55108
-
[
Worm Breeder's Gazette,
1994]
Evolution of vulva formation: Part IV: Variation in AC position can cause a shift of vulva formation towards p(4- 6).p Ralf J. Sommer & Paul W. Sternberg, HHMI & California Institute of Technology, Division of Biology 156-29, Pasadena, CA
-
[
Trop Med Parasitol,
1987]
Simulium sanctipauli s.l. and S. yahense are common and widespread in the rain-forest zone of Liberia, but differ with regard to their biting densities and contribution to the transmission of Onchocerca volvulus. Although, in a study area on the St. Pauli River, S. sanctipauli s.l. (presumably S. soubrense in the sense of Post) was the predominant ma-biting species (74.3% of 30,855 females examined), S. yahense was shown to be the important vector. While 1000 biting females of S. yahense carried 96 3rd stage larvae indistinguishable from O. volvulus, only 14 were found per 1000 females of S. sanctipauli s.l. Of the parous females (3135 S. sanctipauli s.l./1621 S. yahense) 23.8/39.9% harboured 1st and/or 2nd stage filarial larvae and 1.9/9.4% 3rd stage larvae of O. volvulus. Animal filariae of unknown origin, indicative of zoophily, were very common in S. sanctipauli s.l. (13.8%) but practically absent from S. yahense (0.5%). In spite of its poorer vectorial performance S. sanctipauli s.l. cannot be neglected as a vector because it may occur in high biting densities and contribute considerably to the transmission, in particular in the vicinity of the St. Paul River. The interplay of two vector species, which develop in different types of water-courses explains the overall high endemicity of onchocerciasis in the study area.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
Termine D, Becuwe M, Hofbauer HF, Barrasa MI, Pincus D, Imberdis T, Selkoe D, Freyzon Y, Srinivasan S, Soldner F, Nuber S, Sandoe J, Haque A, Welte MA, Clish CB, Terry-Kantor E, Jaenisch R, Kohlwein SD, Fanning S, Dettmer U, Walther TC, Kim TE, Farese RV, Landgraf D, Baru V, Noble T, Lou Y, Lindquist S, Newby G, Ho GPH, Ramalingam N
[
Mol Cell,
2018]
In Parkinson's disease (PD), -synuclein (S) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in S or lipid/fattyacid homeostasis affect each other. Lipidomic profiling of human S-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of S dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased S yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in S-overexpressing rat neurons. In a C.elegans model, SCD knockout prevented S-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on S homeostasis: in human neural cells, excess OA caused S inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for S-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
-
[
PLoS One,
2017]
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved.
-
Kamp F, Winklhofer KF, Giese A, Lutz AK, Brunner B, Wender N, Hegermann J, Haass C, Eimer S, Bartels T, Beyer K, Exner N, Nuscher B
[
EMBO J,
2010]
Aggregation of -synuclein (S) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of S is largely unknown. We demonstrate with in vitro vesicle fusion experiments that S has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, S binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous S. In contrast, siRNA-mediated downregulation of S results in elongated mitochondria in cell culture. S can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, S prevents fusion of differently labelled mitochondrial populations. Thus, S inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of S is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin 1-79 or by DJ-1 C106A.