-
[
Am J Trop Med Hyg,
2010]
The northern Chiapas onchocerciasis focus has undergone 11 years of ivermectin mass treatment. No evidence of microfilariae in the cornea and/or anterior chamber of the eye or in skin snips was seen in residents examined in 2006 in two sentinel communities (upper limit of the 95% confidence interval [UL 95% CI] = 0.5% and 0.3%, respectively). In children 10 and under, 0 of 305 were found to harbor antibodies to Ov16, a marker of parasite exposure; 0 of 4,400 Simulium ochraceum s.l. collected in 2005 contained parasite DNA, giving an UL 95% CI for the infective rate of 0.9/2,000, and an UL 95% CI of the seasonal transmission potential of 1.2 L3/person. These data, assumed to be representative of the focus as a whole, suggest that there is no ongoing transmission of Onchocerca volvulus in the northern Chiapas focus. Community-wide treatments with ivermectin were halted in 2008, and a post-treatment surveillance phase was initiated.
-
[
Am J Trop Med Hyg,
2010]
All endemic communities of the Oaxaca focus of onchocerciasis in southern Mexico have been treated annually or semi-annually with ivermectin since 1994. In-depth epidemiologic assessments were performed in communities during 2007 and 2008. None of the 52,632 Simulium ochraceum s.l. collected in four sentinel communities was found to contain parasite DNA when tested by polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA), resulting in an upper bound of the infection rate in the vectors of 0.07/2,000. The prevalence of microfilariae (mf) in the cornea and/or anterior chamber of the eye was also zero (0 of 1,039 residents examined; 95%-UL = 0.35%). Similarly, all 1,164 individuals examined by skin biopsy were mf negative (95%-UL = 0.31%), and sera collected from 3,569 children from 25 communities did not harbor Ov16 IgG4-antibodies (95%-UL = 0.09%). These meet the criteria for absence of morbidity and parasite transmission in the Oaxaca focus. As a result mass treatments with ivermectin were halted in 2009.
-
Philbrook, Alison, Sengupta, Piali, Amin-Wetzel, Niko, Kazatskaya, Anna, de Bono, Mario, Yuan, Lisa
[
MicroPubl Biol,
2020]
A subset of sensory neurons in C. elegans contains compartmentalized sensory structures termed cilia at their distal dendritic ends (Ward et al. 1975; Perkins et al. 1986; Doroquez et al. 2014). Cilia present on different sensory neuron types are specialized both in morphology and function, and are generated and maintained via shared and cell-specific molecules and mechanisms (Perkins et al. 1986; Evans et al. 2006; Mukhopadhyay et al. 2007; Mukhopadhyay et al. 2008; Morsci and Barr 2011; Doroquez et al. 2014; Silva et al. 2017). The bilaterally symmetric pair of URX oxygen-sensing neurons in the C. elegans head (Figure 1A) is thought to be non-ciliated (Ward et al. 1975; Doroquez et al. 2014) but nevertheless exhibits intriguing morphological similarities with ciliated sensory neurons. URX dendrites extend to the nose where they terminate in large bulb-like complex structures (Ward et al. 1975; Doroquez et al. 2014; Cebul et al. 2020) (Figure 1A). These structures concentrate oxygen-sensing signaling molecules (Gross et al. 2014; Mclachlan et al. 2018) suggesting that similar to cilia, these structures are specialized for sensory functions. Microtubule growth events similar to those observed in ciliated sensory neurons were also reported at the distal dendritic regions of URX, implying the presence of a microtubule organizer such as a remodeled basal body (Harterink et al. 2018). Moreover, a subset of ciliary genes is expressed in URX (Kunitomo et al. 2005; Harterink et al. 2018; Mclachlan et al. 2018). We tested the hypothesis that URX dendrites contain cilia at their distal ends.
-
[
Biochem Biophys Res Commun,
2009]
Our previous data showed that apoptotic suppressors inhibit aluminum (Al)-induced programmed cell death (PCD) and promote Al tolerance in yeast cells, however, very little is known about the underlying mechanisms, especially in plants. Here, we show that the Caenorhabditis elegans apoptotic suppressor Ced-9, a Bcl-2 homologue, inhibited both the Al-induced PCD and Al-induced activity of caspase-like vacuolar processing enzyme (VPE), a crucial executioner of PCD, in tobacco. Furthermore, we show that Ced-9 significantly alleviated Al inhibition of root elongation, decreased Al accumulation in the root tip and greatly inhibited Al-induced gene expression in early response to Al, leading to enhancing the tolerance of tobacco plants to Al toxicity. Our data suggest that Ced-9 promotes Al tolerance in plants via inhibition of Al-induced PCD, indicating that conserved negative regulators of PCD are involved in integrated regulation of cell survival and Al-induced PCD by an unidentified mechanism.
-
[
Mol Cell,
2009]
Three recent papers (Gu et al., 2009; Claycomb et al., 2009; van Wolfswinkel et al., 2009) provide evidence that links a new class of small RNAs and Argonaute-associated complexes to centromere function and genome surveillance.
-
[
Metallomics,
2012]
Aluminium (Al) is highly abundant in the environment and can elicit a variety of toxic responses in biological systems. Here we characterize the effects of Al on Caenorhabditis elegans by identifying phenotypic abnormalities and disruption in whole-body metal homeostasis (metallostasis) following Al exposure in food. Widespread changes to the elemental content of adult nematodes were observed when chronically exposed to Al from the first larval stage (L1). Specifically, we saw increased barium, chromium, copper and iron content, and a reduction in calcium levels. Lifespan was decreased in worms exposed to low levels of Al, but unexpectedly increased when the Al concentration reached higher levels (4.8 mM). This bi-phasic phenotype was only observed when Al exposure occurred during development, as lifespan was unaffected by Al exposure during adulthood. Lower levels of Al slowed C. elegans developmental progression, and reduced hermaphrodite self-fertility and adult body size. Significant developmental delay was observed even when Al exposure was restricted to embryogenesis. Similar changes in Al have been noted in association with Al toxicity in humans and other mammals, suggesting that C. elegans may be of use as a model for understanding the mechanisms of Al toxicity in mammalian systems.
-
[
MicroPubl Biol,
2021]
Like other animals, the nematode C. elegans exhibits reduced movement and sleep in response to sickness, which can be induced by exposure to high temperatures (Hill et al. 2014; Nelson et al. 2014) ultraviolet light (DeBardeleben et al. 2017), and other stressful exposures (Hill et al. 2014; Goetting et al. 2020). This response has been termed Stress/Sickness-Induced Sleep (SIS) (Hill et al. 2014; Trojanowski and Raizen 2016). Exposure to the stressor leads to quiescence in part via release of the cytokine Epidermal Growth Factor (EGF) (Hill et al. 2014; Konietzka et al. 2020), which is encoded by the gene
lin-3 (Hill and Sternberg 1992). EGF activates the ALA and RIS neurons, which then release their respective neuropeptides to effect reduced movement and behavioral quiescence (Konietzka et al. 2020).
-
[
MicroPubl Biol,
2021]
Neuronal networks can achieve similar outputs via distinct underlying circuit mechanisms (Beverly et al., 2011; Marder et al., 2015; Saideman et al., 2007; Trojanowski et al., 2014; Wang et al., 2019). This degeneracy allows networks to maintain robustness without compromising functional flexibility (Cropper et al., 2016; Edelman and Gally, 2001). Since the contribution of degenerate neuronal pathways is likely to be revealed under defined genetic or environmental conditions, it is challenging to identify and describe the contributions of such pathways to neuronal circuit function.
-
[
MicroPubl Biol,
2021]
MEC-4 and UNC-8 are subunits of the DEG/ENaC family of voltage-independent Na+ channels in C. elegans (Driscoll and Chalfie 1991, Canessa, Horisberger et al. 1993, Waldmann, Champigny et al. 1996, Waldmann, Champigny et al. 1997, de Weille, Bassilana et al. 1998, Waldmann and Lazdunski 1998). While MEC-4 is expressed in body touch neurons where it mediates the transduction of gentle touch sensation (Driscoll and Chalfie 1991, O'Hagan, Chalfie et al. 2005), UNC-8 is primarily expressed in motoneurons where it is involved in synaptic remodeling during development (Tavernarakis, Shreffler et al. 1997, Miller-Fleming, Petersen et al. 2016). Both MEC-4 and UNC-8 can be hyperactivated by genetic mutations that hinder channel closing, called (d) mutations (Driscoll and Chalfie 1991, Shreffler, Magardino et al. 1995, Goodman, Ernstrom et al. 2002, Wang, Matthewman et al. 2013). C. elegans neurons and Xenopus oocytes expressing these hyperactive variants of MEC-4 and UNC-8 undergo cell death due to uncontrolled flux of ions into the cell. Cell death in Xenopus oocytes and in cultured C. elegans neurons can be prevented by incubation with the DEG/ENaC channel blocker amiloride (Goodman, Ernstrom et al. 2002, Suzuki, Kerr et al. 2003, Wang, Matthewman et al. 2013).
-
[
Environ Pollut,
2021]
The surface modifications of nanoparticles (NPs), are well-recognized parameters that affect the toxicity, while there has no study on toxicity of Al(2)O(3) NPs with different surface modification. Therefore, for the first time, this study pays attention to evaluating the toxicity and potential mechanism of pristine Al(2)O(3) NPs (p-Al(2)O(3)), hydrophilic (w-Al(2)O(3)) and lipophilic (o-Al(2)O(3)) modifications of Al(2)O(3) NPs both in vitro and in vivo. Applied concentrations of 10, 20, 40, 80,100 and 200 μg/mL for 24 h exposure on Caenorhabditis elegans (C. elegans), while 100 μg/mL of Al(2)O(3) NPs significantly decreased the survival rate. Using multiple toxicological endpoints, we found that o-Al(2)O(3) NPs (100 μg/mL) could induce more severe toxicity than p-Al(2)O(3) and w-Al(2)O(3) NPs. After uptake by C. elegans, o-Al(2)O(3) NPs increased the intestinal permeability, easily swallow and further destroy the intestinal membrane cells. Besides, cytotoxicity evaluation revealed that o-Al(2)O(3) NPs (100 μg/mL) are more toxic than p-Al(2)O(3) and w-Al(2)O(3). Once inside the cell, o-Al(2)O(3) NPs could attack mitochondria and induce the over-production of reactive oxygen species (ROS), which destroy the intracellular redox balance and lead to apoptosis. Furthermore, the transcriptome sequencing and RT-qPCR data also demonstrated that the toxicity of o-Al(2)O(3) NPs is highly related to the damage of cell membrane and the imbalance of intracellular redox. Generally, our study has offered a comprehensive sight to the adverse effects of different surface modifications of Al(2)O(3) NPs on environmental organisms and the possible underlying mechanisms.