[
Front Genet,
2019]
Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites <i>via</i> human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in <i>Onchocerca volvulus</i>, the filarial nematode that causes onchocerciasis, and <i>Wuchereria bancrofti</i>, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.
[
Front Cell Dev Biol,
2020]
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during <i>Caenorhabditis elegans</i> larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the <i>C. elegans</i> AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between <i>C. elegans</i> and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
[
Biology of the Cell,
1999]
In the Caenorhabditis elegans hermaphrodite, the establishment of the egg-laying system requires the connection of two epithelial tubes: the uterus of the gonad and the vulva in the underlying ectoderm. A specialized uterine cell, the anchor cell (AC), plays a central role in specifying the fates of the uterine and vulval precursor cells via the EGF-Ras-MAP kinase and the Notch/Delta signaling pathways. This central and common inducing source ensures that the two sets of cells are in register and it specifies the cell types that build the T-shaped connection between uterus and vulva. On either side, progeny of the induced cells form lumen structures and undergo stereotyped cell-to-cell fusion, thereby building epithelial tubes. Finally, the anchor cell fuses with a uterine syncytium and thus leaves only a thin cellular process between the lumen of the uterus and the vulva. In the adult, the fertilized eggs exit the lumen of the uterus through the vulva. This relatively simple developmental process serves as a model to study the biology of cells during organogenesis, such as intercellular signaling, cell polarity, invasion of basal laminae and epithelia, cell recognition and cell fusion. The anchor cell is a particularly interesting cell as it coordinates the development of its neighboring cells by using different signaling pathways at different times.