-
[
Chembiochem,
2003]
Thank you so very much for inviting me to be here. It gives me a mingled sense of humility at how much I owe to others, and of joy that the collective work on the worm has been recognised in this way.
-
[
Bioessays,
2015]
Nowadays, in the Internet databases era, certain knowledge is being progressively lost. This knowledge, which we feel is essential and should be acquired through education, is the understanding of how the pioneer researchers faced major questions in their field and made their discoveries.
-
[
Curr Biol,
2003]
microRNAs form an abundant class of 21-22 nucleotide, non-coding RNA that is common to diverse species of multicellular life. Although they are currently the subject of intense, directed study, the path toward their discovery has been dominated by chance and serendipity. In this review, I examine how these tiny molecules have risen from genetic obscurity to scientific stardom, and discuss the emerging biological functions of these novel
-
[
Philos Trans R Soc Lond B Biol Sci,
2015]
The article 'Structure of the nervous system of the nematode Caenorhabditis elegans' (aka 'The mind of a worm') by White et al., published for the first time the complete set of synaptic connections in the nervous system of an animal. The work was carried out as part of a programme to begin to understand how genes determine the structure of a nervous system and how a nervous system creates behaviour. It became a major stimulus to the field of C. elegans research, which has since contributed insights into all areas of biology. Twenty-six years elapsed before developments, notably more powerful computers, made new studies of this kind possible. It is hoped that one day knowledge of synaptic structure, the connectome, together with results of many other investigations, will lead to an understanding of the human brain. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
-
[
Genetics,
2019]
The Genetics Society of America's (GSA) Thomas Hunt Morgan Medal honors researchers for lifetime achievement in genetics. The recipient of the 2018 Morgan Medal, Barbara J. Meyer of the Howard Hughes Medical Institute and the University of California, Berkeley, is recognized for her career-long, groundbreaking investigations of how chromosome behaviors are controlled. Meyer's work has revealed mechanisms of sex determination and dosage compensation in <i>Caenorhabditis elegans</i> that continue to serve as the foundation of diverse areas of study on chromosome structure and function today, nearly 40 years after she began her work on the topic.
-
[
Development,
2025]
Dominique Bergmann completed her PhD at the University of Colorado, Boulder, USA, studying left-right asymmetry in the nematode Caenorhabditis elegans. Her interest in cell geometry and organisation led her into the field of plant development, and she carried out postdoctoral research at the Carnegie Institution before establishing her own lab at Stanford University, USA. Dominique is now a Professor of Biology at Stanford and a Howard Hughes Medical Institute Investigator. She has been an Editor at Development since 2023. We caught up with Dominique over Zoom to find out more about her research in the field of stomatal development, her role as an Editor, and how her passion for comparative biology has influenced her career.
-
[
Dis Model Mech,
2024]
The 2024 Nobel Prize in Physiology or Medicine has been awarded to Victor Ambros and Gary Ruvkun "for the discovery of microRNA and its role in post-transcriptional gene regulation". The award celebrates the discovery of small regulatory miRNAs and their mRNA targets, published over three decades ago. The groundwork for this discovery was laid during the early 1980s, when Ambros began studying mutations that caused heterochronic defects in the nematode Caenorhabditis elegans - or shifts in the temporal identities of cells. A major impetus to study the heterochronic genes of C. elegans was to gain mechanistic understanding of how developmental stages are specified - a fascinating question in basic and evolutionary biology. Asking fundamental biological questions with no immediate application to human health ultimately led to the discovery of a new type of RNA, which had broad implications for understanding and treating human disease.
-
[
Exp Oncol,
2012]
The story of cell death began with the origins of cell biology, including important observations by Elie (Ilya) Metchnikoff, who realized that phagocytes engulfed dying cells. Most of the early studies were observational. By the middle of the 20th C, researchers were beginning to explore how cells died, had recognized that cell death was a physiologically controlled process, that the most common mode of death ("shrinkage necrosis", later apoptosis) was tightly controlled, and were speculating whether lysosomes were "suicide bags". Just prior to 1990 several discoveries led to rapid expansion of interest in the field and elucidation of the mechanisms of apoptosis. Closer to the beginning of the 21st C comprehensive analysis of the molecules that controlled and effected apoptosis led to the conclusion that autophagic processes were linked to apoptosis and could serve to limit or increase cell death. Today, realizing that knowledge of the components of cell death has not yet produced pharmaceuticals of therapeutic value, research is turning to questions of what metabolic or other mechanisms indirectly control the activation or suppression of the cell death positive feedback loop. This article is part of a Special Issue entitled "Apoptosis: Four Decades Later"