-
[
J Exp Biol,
2013]
Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24 h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism.
-
[
Exp Gerontol,
2012]
The nematode dauer larva (DL) is a non-aging diapause stage. The DL of the model nematode Caenorhabditis elegans has been studied as a model system for aging and longevity. However, information on DL in other nematode species is limited. In this study, the survivorship, storage, energy consumption, and oxidative stress tolerance of Caenorhabditis japonica DL were examined. C. japonica is a close relative of C. elegans, but has species-specific phoretic associations with the shield bug Parastrachia japonensis. Also, its DL has a much longer lifespan than C. elegans in a biological setting. However, when C. japonica DLs were detached from their phoretic host, they did not survive more than 10 days while more than 80% of C. elegans survived under the same conditions. Also, C. japonica DL showed more active movement (swimming) and lower tolerance to oxidative stress than C. elegans DL. Because the concentration of triacylglycerol (TAG), the energy source of nematodes, did not decrease significantly during the experiment, exhaustion of the energy reservoir did not cause the low survivorship of C. japonica. Instead, low tolerance to oxidizing stress and increased production of reactive oxygen species in C. japonica were the main causes of the reduced survivorship. The fact that C. japonica DL cannot survive away from its insect host indicates that its longevity is increased by unknown factors derived from the host. Despite these significant differences between C. japonica and C. elegans, these two species are phylogenetically closely related (they are derived from a common ancestor). Therefore, C. japonica could be a good comparative system for C. elegans, and further physiological and molecular analyses of C. japonica DL may provide important information about the internal and external factors affecting the longevity of nematodes in general.
-
[
Mol Biol Evol,
2002]
It has been hypothesized that evolutionary changes will be more frequent in later ontogeny than early ontogeny because of developmental constraint. To test this hypothesis, a genomewide examination of molecular evolution through ontogeny was carried out using comparative genomic data in Caenorhabditis elegans and Caenorhabditis briggsae. We found that the mean rate of amino acid replacement is not significantly different between genes expressed during and after embryogenesis. However, synonymous substitution rates differed significantly between these two classes. A genomewide survey of correlation between codon bias and expression level found codon bias to be significantly correlated with mRNA expression (r(s) = -0.30 and P < 10-(131)) but does not alone explain difference, in dS between classes. Surprisingly. it was found that genes expressed after embryogenesis have a significantly greater number of duplicates in both the C. elegans and C briggsae genomes (P < 10(-20) and P < 10(-13)) when compared with early-expressed and nonmodulated genes. A similarity in the distribution of duplicates of nonmodulated and early-expressed genes, as well as a disproportionately higher number of early pseudogenes, lend support to the hypothesis that this difference in duplicate number is caused by selection against gene duplicates of early-expressed genes. reflecting developmental constraint. Developmental constraint at the level of gene duplication may have important implications for macroevolutionary change.
-
[
Trends Genet,
2003]
The advent of whole-genome sequencing and genome-wide transcriptional profiling has opened up new approaches to the resolution of questions that only a few years ago seemed unanswerable. At the same time they have revealed new and sometimes unexpected patterns of gene conservation and functional compensation, chromosomal clustering of transcriptionally related genes, relocation of genes to depopulate or overpopulate the X chromosome with certain functional classes of genes, and gene duplication and functional divergence. What makes molecular evolutionary genomics different from previous approaches is the generality of the results. Choice of genes, and the uncertainties of extrapolating from a sample of genes to the entire genome, is supplanted by direct genome-wide observations. In this article we examine some key recent experiments in RNA interference that illustrate some of the strengths and limitations of evolutionary genomic analysis.
-
[
Comparative Biochemistry and Physiology,
1968]
1. Under axenic conditions, the free-living nematodes, Caenorhabditis briggsae, Turbatrix aceti and Panagrellus redivivus, are unable to synthesize cholesterol from acetate-2-C14 or DL-mevalonate-2-C14. 2. No evidence could be found that sterols other than cholesterol are synthesized by any of the organisms.
-
[
Genome Res,
2004]
The relationship between protein and regulatory sequence evolution is a central question in molecular evolution. It is currently not known to what extent changes in gene expression are coupled with the evolution of protein coding sequences, or whether these changes differ among orthologs (species homologs) and paralogs (duplicate genes). Here, we develop a method to measure the extent of functionally relevant cis-regulatory sequence change in homologous genes, and validate it using microarray data and experimentally verified regulatory elements in different eukaryotic species. By comparing the genomes of Caenorhabditis elegans and C. briggsae, we found that protein and regulatory evolution is weakly coupled in orthologs but not paralogs, suggesting that selective pressure on gene expression and protein evolution is quite similar and persists for a significant amount of time following speciation but not gene duplication. Additionally, duplicates of both species exhibit a dramatic acceleration of both regulatory and protein evolution compared to orthologs, suggesting increased directional selection and/or relaxed selection on both gene expression patterns and protein function in duplicate genes.
-
[
Drug Deliv,
2014]
CONTEXT: In our recent studies, Brugia malayi molecules have shown interesting immune-stimulating and immune-suppressive properties. Among these, F6 a pro-inflammatory (54-68 kDa) SDS-PAGE resolved fraction of the parasite when administered with Freund's complete/incomplete adjuvant in animals, elicited both Th1 and Th2 type immune responses and protects the host from filarial parasite. OBJECTIVE: The present study was aimed at developing biodegradable microspheres for filarial antigenic protein molecules and to investigate the immunoadjuvanticity of microspheres (Ms)-loaded F6 molecules. MATERIALS AND METHODS: Poly-lactide microspheres (DL-PLA-Ms) were prepared using double emulsification and solvent evaporation method; and studied their size, shape, antigen adsorption efficiency, in-process stability, and antigen release profiles. F6 and B. malayi adult worm (BmA: 17 to 180 kDa) protein molecules adsorbed on the Ms were administered in a single shot into Swiss mice, subcutaneously, and investigated their immunoadjuvant effect and compared with one/two doses-schedule of plain F6/BmA. RESULTS: Immunization with F6/BmA-loaded DL-PLA-Ms resulted in upregulation of cellular proliferation, IFN- , TNF- and NO release from host's cells stimulated with F6/BmA or LPS/Con A, IgG, IgG1 and IgG2a levels. These responses were well comparable with the responses produced by two doses of plain BmA/F6. DISCUSSION AND CONCLUSION: In conclusion, a single dose of DL-PLA-Ms-F6 induced predominantly Th1 immune responses and well comparable with two doses of plain F6. This is the first ever report on potential of DL-PLA-Ms as adjuvant for filarial immunogen.
-
[
Genome Res,
2004]
We compare the functional spectrum of protein evolution in two separate animal lineages with respect to two hypotheses: (1) rates of divergence are distributed similarly among functional classes within both lineages, indicating that selective pressure on the proteome is largely independent of organismic-level biological requirements; and (2) rates of divergence are distributed differently among functional classes within each lineage, indicating species-specific selective regimes impact genome-wide substitutional patterns. Integrating comparative genome sequence with data from tissue-specific expressed-sequence-tag (EST) libraries and detailed database annotations, we find a functional genomic signature of rapid evolution and selective constraint shared between mammalian and nematode lineages despite their extensive morphological and ecological differences and distant common ancestry. In both phyla, we find evidence of accelerated evolution among components of molecular systems involved in coevolutionary change. In mammals, lineage-specific fast evolving genes include those involved in reproduction, immunity, and possibly, maternal-fetal conflict. Likelihood ratio tests provide evidence for positive selection in these rapidly evolving functional categories in mammals. In contrast, slowly evolving genes, in terms of amino acid or insertion/deletion (indel) change, in both phyla are involved in core molecular processes such as transcription, translation, and protein transport. Thus, strong purifying selection appears to act on the same core cellular processes in both mammalian and nematode lineages, whereas positive and/or relaxed selection acts on different biological processes in each lineage.
-
[
Nat Genet,
2002]
Transcription is a slow and expensive process: in eukaryotes, approximately 20 nucleotides can be transcribed per second(1,2) at the expense of at least two ATP molecules per nucleotide(3). Thus, at least for highly expressed genes, transcription of long introns, which are particularly common in mammals, is costly. Using data on the expression of genes that encode proteins in Caenorhabditis elegans and Homo sapiens, we show that introns in highly expressed genes are substantially shorter than those in genes that are expressed at low levels. This difference is greater in humans, such that introns are, on average, 14 times shorter in highly expressed genes than in genes with low expression, whereas in C. elegans the difference in intron length is only twofold. In contrast, the density of introns in a gene does not strongly depend on the level of gene expression. Thus, natural selection appears to favor short introns in highly expressed genes to minimize the cost of transcription and other molecular
-
[
MicroPubl Biol,
2021]
Reproductive adults and developmentally arrested larvae often occupy different ecological niches and thus are expected to respond differently to environmental stimuli. To understand the genes that coordinate dauer development and olfactory behavior, we examined adult and dauer C. elegans in wild-type and dauer constitutive mutants (Daf-c). We found all dauers showed decreased attraction to all three odorants tested compared to adults, with
daf-7 dauer larva (DL) exhibiting a concentration-dependent preference shift towards isoamyl alcohol, suggesting that the TGF- pathway is involved in both dauer regulation and dauer-specific odortaxis.