Neurexin cell-adhesion molecules regulate synapse development and function by recruiting synaptic components. Here, we uncover a mechanism for presynaptic assembly that precedes neurexin recruitment, mediated by interactions between cytosolic proteins and membrane phospholipids. Developmental imaging in C.&#
xa0;elegans reveals that the intracellular active zone protein SYD-1 accumulates at nascent presynapses prior to its binding partner neurexin. Combining molecular dynamics simulations to model intrinsic interactions between SYD-1 and lipid bilayers with biochemical and in&#
xa0;vivo validation of these predictions, we find that PIP<sub>2</sub>-interacting residues in the SYD-1 C2 domain are required for active zone assembly. Genetic perturbation of a PIP<sub>2</sub>-generating enzyme disrupts synaptic SYD-1 accumulation, while the PIP<sub>2</sub>-interacting domain of mammalian RIM1 can compensate for the SYD-1 C2 domain, suggesting functional homology between these proteins. Finally, we propose that the evolutionarily conserved &#
x3b3;-neurexin isoform represents a minimal neurexin sequence that stabilizes nascent presynaptic assemblies, potentially a core function of this isoform.