-
Markaki M, Eisenberg T, Alavian-Ghavanini A, Carmona-Gutierrez D, Tavernarakis N, Michael E, Broeskamp F, Buttner S, Habernig L, Sommer C, Sigrist SJ, Kroemer G, Madeo F
[
Cell Cycle,
2014]
As our society ages, neurodegenerative disorders like Parkinsons disease (PD) are increasing in pandemic proportions. While mechanistic understanding of PD is advancing, a treatment with well tolerable drugs is still elusive. Here, we show that administration of the naturally occurring polyamine spermidine, which declines continuously during aging in various species, alleviates a series of PD-related degenerative processes in the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, two established model systems for PD pathology. In the fruit fly, simple feeding with spermidine inhibited loss of climbing activity and early organismal death upon heterologous expression of human -synuclein, which is thought to be the principal toxic trigger of PD. In this line, administration of spermidine rescued -synuclein-induced loss of dopaminergic neurons, a hallmark of PD, in nematodes. Alleviation of PD-related neurodegeneration by spermidine was accompanied by induction of autophagy, suggesting that this cytoprotective process may be responsible for the beneficial effects of spermidine administration.
-
Van den Haute C, Carmona-Gutierrez D, Ring J, Broeskamp F, Benke S, Markaki M, Dengjel J, Bammens T, Buttner S, Braun R, Meisinger C, Winderickx J, Eisenberg T, Ruckenstuhl C, Kroemer G, Madeo F, Habernig L, Taskin AA, Tavernarakis N, Sigrist SJ, Frohlich KU, Vlachos M, Kovacs GG, van der Perren A, Macchi F, Ruli D, Baekelandt V, Kuttner V, Vogtle FN
[
EMBO J,
2013]
Malfunctioning of the protein alpha-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces alpha-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human alpha-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the alpha-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of alpha-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of alpha-synuclein cytotoxicity.
-
Broeskamp F, Buttner S, Sigrist SJ, Tavernarakis N, Ruli D, Freudenberger P, D'hooge P, Faes L, Eisenberg T, Madeo F, Pieber TR, Winderickx J, Carmona-Gutierrez D, Benke S, Franssens V, Kourtis N, Reichelt WN, Kroemer G, Harger A, Callewaert G, Ghillebert R, Habernig L
[
Cell Death Differ,
2013]
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons, which arises from a yet elusive concurrence between genetic and environmental factors. The protein -synuclein (Syn), the principle toxic effector in PD, has been shown to interfere with neuronal Ca(2+) fluxes, arguing for an involvement of deregulated Ca(2+) homeostasis in this neuronal demise. Here, we identify the Golgi-resident Ca(2+)/Mn(2+) ATPase PMR1 (plasma membrane-related Ca(2+)-ATPase 1) as a phylogenetically conserved mediator of Syn-driven changes in Ca(2+) homeostasis and cytotoxicity. Expression of Syn in yeast resulted in elevated cytosolic Ca(2+) levels and increased cell death, both of which could be inhibited by deletion of PMR1. Accordingly, absence of PMR1 prevented Syn-induced loss of dopaminergic neurons in nematodes and flies. In addition, Syn failed to compromise locomotion and survival of flies when PMR1 was absent. In conclusion, the Syn-driven rise of cytosolic Ca(2+) levels is pivotal for its cytotoxicity and requires PMR1.
-
[
J Biol Chem,
2007]
The biological methyl donor, S adenosylmethionine (AdoMet), can exist in two diastereoisomeric states with respect to its sulfonium ion. The "S" configuration, (S,S)AdoMet, is the only form that is produced enzymatically as well as the only form used in almost all biological methylation reactions. Under physiological conditions, however, the sulfonium ion can spontaneously racemize to the "R" form, producing (R,S)AdoMet. As of yet, (R,S)AdoMet has no known physiological function and may inhibit cellular reactions. In this study, two enzymes have been found in Saccharomyces cerevisiae that are capable of recognizing (R,S)AdoMet and using it to methylate homocysteine to form methionine. These enzymes are the products of the SAM4 and MHT1 genes, previously identified as homocysteine methyltransferases dependent upon AdoMet and S-methylmethionine respectively. We find here that Sam4 recognizes both (S,S) and (R,S)AdoMet, but its activity is much higher with the R,S form. Mht1 reacts with only the R,S form of AdoMet while no activity is seen with the S,S form. R,S-specific homocysteine methyltransferase activity is also shown here to occur in extracts of Arabidopsis thaliana, Drosophila melanogaster, and Caenorhabditis elegans, but has not been detected in several tissue extracts of Mus musculus. Such activity may function to prevent the accumulation of (R,S)AdoMet in these organisms.
-
Termine D, Becuwe M, Hofbauer HF, Barrasa MI, Pincus D, Imberdis T, Selkoe D, Freyzon Y, Srinivasan S, Soldner F, Nuber S, Sandoe J, Haque A, Welte MA, Clish CB, Terry-Kantor E, Jaenisch R, Kohlwein SD, Fanning S, Dettmer U, Walther TC, Kim TE, Farese RV, Landgraf D, Baru V, Noble T, Lou Y, Lindquist S, Newby G, Ho GPH, Ramalingam N
[
Mol Cell,
2018]
In Parkinson's disease (PD), -synuclein (S) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in S or lipid/fattyacid homeostasis affect each other. Lipidomic profiling of human S-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of S dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased S yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in S-overexpressing rat neurons. In a C.elegans model, SCD knockout prevented S-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on S homeostasis: in human neural cells, excess OA caused S inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for S-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
-
[
PLoS One,
2017]
In this paper, the metabolic activity in single and dual species biofilms of Staphylococcus epidermidis and Staphylococcus aureus isolates was investigated. Our results demonstrated that there was less metabolic activity in dual species biofilms compared to S. aureus biofilms. However, this was not observed if S. aureus and S. epidermidis were obtained from the same sample. The largest effect on metabolic activity was observed in biofilms of S. aureus Mu50 and S. epidermidis ET-024. A transcriptomic analysis of these dual species biofilms showed that urease genes and genes encoding proteins involved in metabolism were downregulated in comparison to monospecies biofilms. These results were subsequently confirmed by phenotypic assays. As metabolic activity is related to acid production, the pH in dual species biofilms was slightly higher compared to S. aureus Mu50 biofilms. Our results showed that S. epidermidis ET-024 in dual species biofilms inhibits metabolic activity of S. aureus Mu50, leading to less acid production. As a consequence, less urease activity is required to compensate for low pH. Importantly, this effect was biofilm-specific. Also S. aureus Mu50 genes encoding virulence-associated proteins (Spa, SplF and Dps) were upregulated in dual species biofilms compared to monospecies biofilms and using Caenorhabditis elegans infection assays, we demonstrated that more nematodes survived when co-infected with S. epidermidis ET-024 and S. aureus mutants lacking functional spa, splF or dps genes, compared to nematodes infected with S. epidermidis ET-024 and wild- type S. aureus. Finally, S. epidermidis ET-024 genes encoding resistance to oxacillin, erythromycin and tobramycin were upregulated in dual species biofilms and increased resistance was subsequently confirmed. Our data indicate that both species in dual species biofilms of S. epidermidis and S. aureus influence each other's behavior, but additional studies are required necessary to elucidate the exact mechanism(s) involved.
-
Kamp F, Winklhofer KF, Giese A, Lutz AK, Brunner B, Wender N, Hegermann J, Haass C, Eimer S, Bartels T, Beyer K, Exner N, Nuscher B
[
EMBO J,
2010]
Aggregation of -synuclein (S) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of S is largely unknown. We demonstrate with in vitro vesicle fusion experiments that S has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, S binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous S. In contrast, siRNA-mediated downregulation of S results in elongated mitochondria in cell culture. S can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, S prevents fusion of differently labelled mitochondrial populations. Thus, S inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of S is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin 1-79 or by DJ-1 C106A.
-
[
Pathog Dis,
2014]
Due to the resistance of Staphylococcus aureus to several antibiotics, treatment of S. aureus infections is often difficult. As an alternative to conventional antibiotics, the field of bacterial interference is investigated. Staphylococcus epidermidis produces a serine protease (Esp) which inhibits S. aureus biofilm formation and which degrades S. aureus biofilms. In this study, we investigated the protease production of 114 S. epidermidis isolates, obtained from biofilms on endotracheal tubes (ET). Most of the S. epidermidis isolates secreted a mixture of serine, cysteine and metalloproteases. We found a link between high protease production by S. epidermidis and the absence of S. aureus in ET biofilms obtained from the same patient. Treating S. aureus biofilms with the supernatant (SN) of the most active protease producing S. epidermidis isolates resulted in a significant biomass decrease compared to untreated controls, while the number of metabolically active cells was not affected. The effect on the biofilm biomass was mainly due to serine proteases. Staphylococcus aureus biofilms treated with the SN of protease producing S. epidermidis were thinner with almost no extracellular matrix. An increased survival of Caenorhabditis elegans, infected with S. aureus Mu50, was observed when the SN of protease positive S. epidermidis was added.
-
[
Mol Cell Biol,
1997]
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae
dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a
dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe
dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe
dbr1::
leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe
dbr1::
leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.
-
[
Parasitology,
1998]
In the savanna areas of tropical Africa, cattle are frequently infected with the filaria Onchocerca ochengi. This parasite is closely related to Onchocerca volvulus, the causative agent of human onchocerciasis (river blindness), and is capable of developing in the same vector, Simulium damnosum s.l. In North Cameroon, where both O. ochengi and O. volvulus are endemic, we carried out a field study (reported in this and 2 following papers) to examine to which extent the transmission of the 2 parasite species overlap and what influence this has on the epidemiology of human onchocerciasis. In this paper we report our experiments to determine which of the S. damnosum species in North Cameroon act as vectors of O. ochengi, how efficiently they do so and whether other Simulium species play a vector role. To this end, infected cattle were exposed near 5 rivers in different geographical areas. Among 14 Simulium species identified as aquatic and/or adult stages at these rivers, only 6 (S. squamosum, S. damnosum s.s., S. sirbanum, S. bovis, S. wellmanni and S. hargreavesi) were found to bite cattle in important numbers in at least 1 of the sites. The 3 species of the S. damnosum complex were all capable of ingesting microfilariae (mf) of O. ochengi and developing a proportion of them to infective larvae (L3). Whereas S. squamosum and S. damnosum s.s., the prevailing vectors in the Guinea and Sudan savanna respectively, showed a high vector competence (17% of ingested mf developed to L3), S. sirbanum, which was much rarer in both areas, appeared to have a much lower susceptibility (2%). Other boophilic Simulium species were only seen in certain sites and seasons, being either incapable of ingesting important numbers of O. ochengi mf from body regions where these mf were abundant (S. bovis, S. hargreavesi); not able to support the development of ingested mf to L3 (S. wellmanni), or bit cattle preferentially in the ears, where O. ochengi mf do not occur (S. hargreavesi). We conclude that in North Cameroon members of the S. damnosum complex are the only important vectors of O. ochengi, with S. squamosum and S. damnosum s.s. being the main vectors.