-
[
Comp Biochem Physiol A Mol Integr Physiol,
2006]
Animals are routinely faced with harsh environmental conditions in which insufficient energy is available to grow and reproduce. Many animals adapt to this challenge by entering a dormant, or quiescent state. In some animals, such as the nematode Caenorhabditis elegans, quiescence is coincident with increased stress resistance and longevity. Here we review evidence that the rules of life span extension established in C. elegans may be generally true of most animals. That is, that the rate of animal aging correlates inversely with cellular resistance to physiological stress, particularly oxidative stress, and that stress resistance is co-regulated with the quiescence adaptation (where the latter occurs). We discuss evidence for highly conserved intracellular signalling pathways involved in energy sensing that are sensitive to aspects of mitochondrial energy transduction and can be modulated in response to energetic flux. We provide a broad overview of the current knowledge of the relationships between energy, metabolism and life span.
-
[
Parasitology,
2000]
This detailed review of the published studies underlying ivermectin's recent registration for use in lymphatic filariasis (LF) demonstrates the drug's single-dose efficacy (over the range of 20-400 microg/kg) in clearing microfilaraemia associated with both Wuchereria bancrofti and Brugia malayi infections of humans. While doses as low as 20 microg/kg could effect transient microfilarial (mf) clearance, higher dosages induced greater and more sustained mf reduction. The single dose of 400 microg/kg yielded maximal responses, but a number of practical considerations suggest that either 400 microg/kg or 200 microg/kg doses would be acceptable for use in LF control programmes. Associated safety assessments indicate that adverse events, which occur commonly following treatment of microfilaraemic individuals, develop not because of drug toxicity but because of host inflammatory responses to dying microfilariae killed by the ivermectin treatment. Ivermectin is, therefore, a highly effective and generally well tolerated microfilaricide that may soon become an essential component of many public health initiatives to interrupt transmission of lymphatic filarial infection in an effort to eliminate LF globally.
-
[
Acta Leiden,
1990]
Community trials were started to address questions concerning the safety of ivermectin during large scale treatment, its potential for transmission control, its effect in preventing ocular onchocercal disease, its acceptability and the organization of large scale treatment. A summary is presented of the major, latest results on the short-term epidemiological impact of large scale ivermectin treatment, as observed in eight community trials undertaken in the Onchocerciasis Control Programme in West Africa (OCP). Ivermectin treatment resulted in a 96%-99% reduction in the mean load of microfilariae (mf) in the skin in treated patients. The subsequent mf-repopulation of the skin was faster than in the clinical trials and after 12 months the mean loads had returned to more than 40% of the pre-treatment load. Ocular mf loads were also greatly reduced and a post-treatment regression of early lesions of the anterior segment of the eye was observed. The transmission of Onchocerca volvulus was reduced by some 60% during the first year after treatment in one trial but no additional reduction was observed after the second treatment round. These results, and other recent research findings, have been used to quantify an epidemiological model for the transmission and control of onchocerciasis. Preliminary results of computer simulations of the predicted long-term epidemiological impact of large scale ivermectin treatment indicate that ivermectin treatment may play a very important role in disease control but that it is unlikely to become a practical tool for transmission control in endemic foci. Ivermectin treatment appears to be the most appropriate method for control of recrudescence of infection in an area where the parasite reservoir has been virtually eliminated by vector control, such as in the core area of the OCP.
-
[
J Bioenerg Biomembr,
1993]
The ADP/ATP, phosphate, and oxoglutarate/malate carrier proteins found in the inner membranes of mitochondria, and the uncoupling protein from mitochondria in mammalian brown adipose tissue, belong to the same protein superfamily. Established members of this superfamily have polypeptide chains approximately 300 amino acids long that consist of three tandem related sequences of about 100 amino acids. The tandem repeats from the different proteins are interrelated, and probably have similar secondary structures. The common features of this superfamily are also present in nine proteins of unknown functions characterized by DNA sequencing in various species, most notably in Caenorhabditis elegans and Saccharomyces cerevisiae. The high level expression in Escherichia coli of the bovine oxoglutarate/malate carrier, and the reconstitution of active carrier from the expressed protein, offers encouragement that the identity of superfamily members of known sequence but unknown function may be uncovered by a similar route.
-
[
Traffic,
2003]
Proteins must be correctly folded and assembled to fulfill their functions as assigned by genetic code. All living cells have developed systems to counteract protein unfolding or misfolding. A typical example of such a homeostatic response is triggered when unfolded proteins are accumulated in the endoplasmic reticulum. Eukaryotic cells cope with endoplasmic reticulum stress by attenuating translation, generally to decrease the burden on the folding machinery, as well as by inducing transcription of endoplasmic reticulum-localized molecular chaperones and folding enzymes to augment folding capacity. These translational and transcriptional controls are collectively termed the unfolded protein response. The unfolded protein response is unique in that the molecular mechanisms it uses to transmit signals from the endoplasmic reticulum lumen to the nucleus are completely different from those used for signaling from the plasma membrane. Frame switch splicing (a term newly proposed here) and regulated intramembrane proteolysis (proposed by Brown et al., Cell 2000; 100: 391-398) employed by the unfolded protein response represent novel ways to activate a signaling molecule post-transcriptionally and post-translationally, respectively. They are critically involved in various cellular regulation pathways ranging from bacterial extracytoplasmic stress response to differentiation of mature B cells into antibody-secreting plasma cells. Further, mammalian cells take advantage of differential properties between the two mechanisms to determine the fate of proteins unfolded or misfolded in the endoplasmic reticulum. This review focuses on the transcriptional control that occurs during the unfolded protein response in various species.